AndreiRN
Apicultor
Din: Los Angeles
Inregistrat: acum 15 ani
Postari: 2417
|
|
da, dar fara poze.
Powdered sugar dusting The second punch in our combination came from Finland. A few years ago, I came across an article in ABJ by the Finnish researcher, Dr. Kamran Fakhimzadeh (2000). He had been looking at various materials for dusting bees, with the intent to cause increased drop of the phoretic varroa mites. He hit upon powdered sugar as being both non contaminating to honey, and just the right size to clog up the mites’ feet. Pettis and Shimanuki (1999) had already proposed using dust in conjunction with a screened bottom board for varroa control. I mentioned the articles at our local bee meeting. One hobbyist member, Janet Brisson, was taken by the possibility of using sugar dusting and screened bottoms for mite control, and became a proselytizer for the method. I found the concept to be of interest, but the time-consuming method by which she and others went about applying the dust seemed totally unpractical to me. Last year, at the club meeting, I asked for a show of hands as to what methods members were employing to control the mite. I was surprised that the majority were using sugar dusting! Finally, after seeing the method apparently being successful for two years, and reading Jerry Hayes (2004) promote the “Dowda” method in The Classroom, I felt that I needed to give sugar dusting a second look! I did a few tests. I saw that sugar dusting sure did cause a lot of mites to drop, but it didn’t appear to affect subsequent stickyboard counts much, even after two weeks of repeated dustings! Something didn’t make sense. How could this method work if it didn’t affect sticky counts? Then I started researching mite population dynamics, and realized the error of my thinking. Mites are only phoretic for about 5 days during broodrearing (a range of 4-15 days, dependent upon a number of factors (Harbo and Harris (2004)). Therefore, one would expect about a 20% turnover of phoretic mites every day, as older ones reenter brood cells, and new ones emerge. Knowing this, even if you had some new wonder chemical that killed 100% of the phoretic mites one day, you’d still have a 20% return of the phoretic mite population the next day, 40% by the second day, and back to the pretreatment level within a week! If you were to take a stickyboard count a week after the 100% kill, you would see zero effect from the dusting! What I realized was that the problem wasn’t that sugar dusting didn’t work, but that I was not measuring its efficacy the right way! So I looked to the literature for measured levels of efficacy of an in-hive sugar dusting. To my surprise, there weren’t any. Fakhimzadeh had only measured the increase in daily mite drop and Aliano and Ellis (2005) had recorded a 75% mite drop only from caged bees. I contacted every researcher and beekeeper I could for an in-hive efficacy figure, but no one had one. So I collected the hard data myself, by dusting three test colonies (one, two, and three story), measuring the mite drop for the first hour, and then sacrificing all the bees in the colonies and washing the mites from them. I will write up a full version of the results when we complete testing, but in short, about a third of all phoretic mites in a colony drop in the first hour after dusting! I now had a figure that I could use for crude modeling of the effect of repeated sugar dusting on mite population growth. I wanted to see if a mathematical model based upon the mite kill rate I measured would reflect the reports from the field. Since Fakhimzadeh and other beekeepers report that mites continue to fall at an increased rate for over 24 hours, I made the assumption that a good sugar dusting would kill 50% of the phoretic mites—a round number based upon a 33% initial kill, plus an arbitrarily assumed half again residual kill. These are working numbers subject to revision when we obtain more data. Let me be clear at this point. I’m not about to recommend any varroa control treatment based upon mathematical modeling. What I’m curious to see, is whether the amount of mite drop caused by powdered sugar dusting could be mathematically expected to effect the mite control claimed by its proponents. So I called around to those who have been using the technique for over two years, and asked them for their records and observations. Some dusting practitioners had used ancillary treatments, such as drone brood trapping, or essential oils, so I allowed for those treatments. Their records indicated that: Initial dusting once a week for several weeks knocks mite levels way back, dusting twice a month keeps the mites at low levels, and dusting monthly (or even less frequently) keeps the mites at tolerable levels. So, let’s see if crude mathematical modeling supports the field experience. I set up a simple mite population growth curve based upon a starting population of 100 mites, and a reasonable 2.4% daily mite growth rate (Martin 1998). Then I killed 1/6 of the total mite population at each dusting, based upon killing half of the one-third of the total mite population that is phoretic at any given time during the treatment period of March 1 through September 1. This model is very crude, and doesn’t account for amount of drone brood, multiple infestation, or other variables, and should only be used to give us a rough idea of the feasibility of the technique. I must admit, the results surprised me in how closely they reflected field experience! Clearly, powdered sugar dusting as a mite control measure has proven field efficacy, plus a mathematical model to support it. The estimated effect of powdered sugar dusting over a screened bottom on mite population growth, based upon a starting population of 100 mites, a daily growth rate of 2.4%, and an estimated kill of 50% of the phoretic mites per dusting treatment. Note that weekly dustings would result in a decrease in the mite population. These curves are based upon very crude math, and are only for general illustrative purposes, although they confirm field experience. Note that the control curve reaches a devastating mite level by September 1st. Monthly dusting in this model keeps the mite population below a moderate threshold of 3000 mites, and bimonthly dusting keeps ‘em below 1000—a load that is considered acceptable by most all authorities. The weekly dustings actually decreased the mite population over the treatment period. Not only that, but the illustrated curves likely underestimate the effect of sugar dusting, since even though it effectively kills only a sixth of the mites, the mites killed are those that would have been most likely to survive to reproduce. That is, once a mite is in the phoretic stage, its natural mortality rate is very low—about 0.6% (6 out of 1000) per day, as compared to the 20 –30% mortality of those first emerging from cells (Martin 1998). Although about two-thirds of the mites are under cappings and thereby protected from dusting treatments, that proportion is tempered by the fact that a quarter of them will not survive through emergence. This makes the mortality of the phoretic mites more important than their proportion might indicate. Recall from my discussion of mite population dynamics that that a female mite needs to average 2-3 reproductive cycles for varroa populations to grow at the pace that we see in the field. If sugar dusting knocks a mite down early in her life, she will be unable to complete multiple cycles. The surprising effectiveness of sugar dusting may due to its impact on the average number of reproductive cycles that a mite can complete.
The Oliver 15-second sugar dust method Before I even considered advocating sugar dusting, I knew that no one with more than a hive or two would be out there using the suggested application methods of flour sifters or squeeze bottle puffing. It was far too time consuming! So I bought 50 lbs of powdered sugar from my local baker (it’s cheaper that way) and set out to see if I could come up with an easier, quicker method. I did. The method: Materials: 1. A 5 gal bucket with a screw top lid to hold the fine confectioner’s sugar. Hobbyists can use any airtight kitchen container. Large operators may wish to use a rectangular plastic waste basket on a caddy that also holds the screen. 2. A bee brush with a 1-cup measuring cup taped to the handle (large operators will need a cup with a strong handle). Fluffing the sugar once by tipping the bucket will make it much easier to scoop. 3. A wood-rimmed moving screen of (strong) steel window screen. The rim should be ľ” on the top side (to contain the sugar), and at least 3/8” on the other (to space the screen above the top bars). I used 1/8” hardware cloth at first—it’s faster to sift, but doesn’t do as good a job at breaking up the lumps of sugar. 4. The colony should be on a screened bottom (I’m assuming this, but have not tested to see if it’s truly necessary). Technique: 1. Smoke the colony. 2. Remove the cover and smoke the bees down off the top bars. 3. Put the moving screen over the frames, and then use the cup to spread powdered sugar on the screen over the cluster area. Use 1 cup (approx. 100g) for 1-story colonies, or 2 cups for double deeps. 4. Flip the brush around, and use it to sift the sugar through the screen. 5. Lift the screen, and continue to use the brush crosswise across the top bars to sift the sugar into the beeways. 6. Replace the cover. We do this entire operation handily in less than 15 seconds! 7. Mites will begin to fall within seconds. If you’ve put a dry stickyboard under the screened floor, you can get a good indication of your mite level in an hour.
Tools for the Oliver 15-second sugar dust. Note the cup duct taped to the brush handle as a time-saving measure. Window screen in wooden frame.
Use one cup of sugar for singles, two cups for doubles. Brush the sugar through the screen over the cluster of bees.
Lift the screen, and brush the sugar crossways across the frames so that it all falls on the bees. The whole process takes less than 15 seconds! Kill two birds with one stone by combining dusting with other hive procedures. Feeding pollen supplement here.
This is a frame from the bottom brood chamber of a double, two minutes after dusting the top bars of the upper box with two cups of sugar. Note the sugar that has fallen through onto the top bars, and onto the bees and combs.
Close up of the bees from the frame in the previous photo. Note the sugar dust on their bodies, even though we dusted the box above. Tips: 1. In this case, more is better. Use enough sugar so that some falls through the screened floor. 2. Test your technique by pulling frames of bees from the bottom box in about two minutes. They should be obviously dusted white. 3. Keep yer powder dry! Damp powdered sugar clumps too much to dust the bees efficiently. Store it in a warm, dry place. Discussion OK, sugar dusting has a proven track record, a mathematical explanation for its efficacy based upon mite population dynamics, and can be done quickly and cheaply (less than 25˘ to treat a 2-story colony). Why does it work, and will it harm my bees? Luckily, this question has largely been answered, both from practical experience, and scientific research. Sugar dust adheres to a mite’s ambulacra (foot pads) (Fakhimzadeh 2000), apparently causing the mite to lose its grip on the bee. Dusting may, in addition, stimulate bee grooming behavior (Macedo & Ellis 2002). It is a mechanical method of mite control, rather than chemical. It does not directly kill the mites—they fall out of the hive and can’t return. Fakhimzadeh (2001) found that direct heavy dusting resulted in greater mite drop than light blow dusting, and that no sugar particles were found in the bees’ trachea (breathing tubes). Heavy dusting may cause significant egg removal, and loss of a fraction of the older larvae (Aliano & Ellis 2005). This loss would be of little consequence, since a portion a day’s quota of eggs represents a relatively minor investment to the colony. Fakhimzadeh (2001) also found that dusting at frequent intervals did not appear to affect brood production, colony strength, queen survivorship, or honey production. Note that he dusted with less sugar 15g (about 1/8 cup per colony) than is currently recommended. His control of mite buildup was also less. I have not heard reports of problems due to dusting with 2 cups per colony. There are drawbacks to sugar dusting. First, its application is dependent upon fair weather. It may also draw ants. Janet Brisson reported that sugar dusting during a nectar dearth may initiate robbing. I suggested that she try the old trick of removing all the hive covers in the apiary when you begin. That stopped the robbing problem. The question has arisen as to the best time of day to dust. I don’t know. Most mites hang out mostly on younger bees around the brood nest, so it may not be important to dust all the foragers. We still have lots to learn! Some practitioners suggest banging the side of the hive after application to dislodge the sugar and stir up the bees. This makes sense. I’ve had an additional brainstorm: I’ve figured out how to effectively infuse powdered sugar with menthol, in the hope that it will agitate the mites, and cause more to drop. But first I need to test it to see if it kills brood. I’ll keep you posted on the results. The beauty of sugar dusting is that you can do it as often as needed to control the mite. If your bees pick up extra mites from collapsing colonies, hit ‘em with sugar. Use the “Shoot first and ask questions later” method of dusting and taking a mite sample at the same time with a stickyboard (it doesn’t need to be sticky if you use enough sugar so that it falls on the board). If you see a lot of mites, dust weekly; if there are few mites, wait a month. When your colonies are broodless, a few sugar dustings would be expected to knock the snot out of the mite population, since they are all exposed to sugar at that time. I’ll try to get some numbers next winter. I have been corresponding with the California Department of Pesticide Regulation. I explained how sugar dusting (and grease patties for tracheal mite control) were used, and asked them for an opinion as to whether they would be considered as pesticides, and therefore subject to regulation. Their response was: “Randy, the two products of discussion are food products that are normally consumed and have labels that do not make any pest control claims. The way you are using them is to either create a barrier to the mites or mask the smell of the bees so the mites won't be attracted to them. These actions are usually not thought to be methods of pest control that need to be registered. These are like home-remedies. As long as the food product labels do not make any pest control claims like kills, controls, repels, etc. mites in bees, these are not pesticide uses and do not have to be registered.” Bottom Line Surprise—powdered sugar dusting really kills drops a significant proportion of the phoretic mites, and that exerts a strong effect on mite reproduction. It’s safe, doesn’t hurt the colony, can be used even when they’re storing honey, works any time of year that the bees are not in tight cluster, is cheap, and only takes 15 seconds! If you use an insert, it will even tell you how soon you should dust again.
_______________________________________ 320 de zile senine fac albinele fericite
|
|